IEEE.orgIEEE Xplore Digital Library IEEE Standards IEEE SpectrumMore Sites
Tutorial #2 - Wireless Transmission for Advanced Internet of Things: A Unifying Data-Oriented Approach - VTC2020-Fall Victoria

Tutorial #2 – Wireless Transmission for Advanced Internet of Things: A Unifying Data-Oriented Approach

Instructor: Hong-chuan Yang, University of Victoria, Canada
Instructor: Mohamed-Slim Alouini, King Abdullah University of Science and Technology (KAUST), Saudia Arabia

Abstract: Wireless communication systems will play an essential role in data transmission for future Internet of Things (IoT). The design and optimization of wireless transmission strategies for diverse IoT applications that generate data of variable sizes and dramatically different quality of service requirements are of critical contemporary interest. In this proposed tutorial, we present a unique data-oriented approach for wireless transmission system design, specifically targeting vertical IoT applications that demand ultra-reliable low-latency and extremely high energy efficiency. We introduce novel data-oriented metrics to characterize theoretical performance limits for various transmission scenarios. These performance metrics are also applied to the analysis and design of practical transmission schemes.The data-oriented approach offers important new insights and leads to interesting new research directions. Through this tutorial, the attendees can obtain a brand new perspective to the analysis and optimization of wireless transmission technologies for advanced IoT applications.

Bio:  Dr. Hong-Chuan Yang (Senior Member IEEE) received the Ph.D. degree in electrical engineering from the University of Minnesota in 2003. He is a professor of the Department of Electrical and Computer Engineering at the University of Victoria, Canada. From 1995 to 1998, He was a Research Associate at the Science and Technology Information Center (STIC) of the Ministry of Posts & Telecomm. (MPT), Beijing, China. His current work mainly focuses on different aspects of wireless communications, with special emphasis on channel modeling, diversity techniques, system performance evaluation, cross-layer design, and energy efficient communications. He has published over 200 journal and conference papers. He is the author of the book Introduction to Digital Wireless Communications by IET press and the co-author of the book Advanced Wireless Transmission Technologies by Cambridge University Press.

Bio: Dr. Mohamed-Slim Alouini (Fellow IEEE) received the Ph.D. degree in electrical engineering from the California Institute of Technology (Caltech) in 1998. He also received the Habilitation degree from the Universite Pierre et Marie Curie in 2003. Dr. Alouini started his academic career at the University of Minnesota in 1998. In 2005, he joined Texas A&M University at Qatar, Doha, and in 2009, he was appointed as Professor of Electrical Engineering at KAUST, Thuwal, Mekkah Province, Saudi Arabia, where he is responsible for research and teaching in the areas of Communication Theory and Applied Probability. More specifically, his research interests include design and performance analysis of diversity combining techniques, MIMO techniques, multi-hop/cooperative communications systems, cognitive radio systems, and multiresolution, hierarchical and adaptive modulation schemes. Dr. Alouini has published several papers on the above subjects, and he is co-author of the textbook Digital Communication over Fading Channels published by Wiley Interscience. He is a Fellow of the IEEE, a member of the Thomson ISI Web of Knowledge list of Highly Cited Researchers, and a co-recipient of best paper awards in eight IEEE conferences (including ICC, GLOBECOM, VTC, and PIMRC).